Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A century of beech bark disease (BBD) in North America has transformed hardwood forests by reducing the canopy biomass of American beech (Fagus grandifolia), even as beech has come to dominate the sapling layer of many forests. We do not understand the extent to which environmental change drivers such as climate, acidic atmospheric deposition (and its legacy of acidified soils), and invasive disease (BBD) may have contributed to this transformation. We investigated how BBD effects and tree community composition varied along a well-documented soil acidity gradient in the northeastern United States. We surveyed overstory and sapling layer tree species composition, BBD effects, and soil chemistry on 30 watersheds in forests codominated by beech and sugar maple (Acer saccharum). We analyzed potential drivers of community composition, BBD, and beech sapling density using linear models and non-metric multidimensional scaling. Predictors accounted for soil chemistry, climate, overstory beech (importance value, IV), mortality, and BBD defect. Overall overstory species composition varied most along the acidity gradient, while beech and BBD severity varied along their own distinct environmental gradient. Species composition of the overstory and sapling layers diverged significantly, with the latter dominated by beech. Beech sapling density was positively related to the proportion of standing dead overstory beech and soil exchangeable aluminum, but was unrelated to the overall proportion of overstory beech or their BBD severity. The dominance of sapling layers by beech may have resulted from a gradual accumulation of canopy-opening events precipitated by BBD and sugar maple decline, the latter driven by stressors such as acidification and climate change.more » « less
-
ABSTRACT AimTo quantify the intra‐community variability of leaf‐out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost. LocationEastern North America (ENA) and Europe (EUR). Time Period2009–2022. Major Taxa StudiedTemperate deciduous forest trees. MethodsWe developed an approach to quantify ICVLo through the analysis of RGB images taken from phenological cameras. We related ICVLo to species richness, phylogenetic diversity and environmental conditions. We quantified the intra‐community variability of the amount of radiation received and of exposure to late frost. ResultsLeaf‐out occurred over a longer time interval in ENA than in EUR. The sensitivity of leaf‐out to temperature was identical in both regions (−3.4 days per °C). The distributions of ICVLo were similar in EUR and ENA forests, despite the latter being more species‐rich and phylogenetically diverse. In both regions, cooler conditions and an earlier occurrence of leaf‐out resulted in higher ICVLo. ICVLo resulted in ca. 8% difference of radiation received from leaf‐out to September among individual trees. Forest communities in ENA had shorter safety margins as regards the exposure to late frosts, and were actually more frequently exposed to late frosts. Main ConclusionsWe conducted the first intercontinental analysis of the variability of leaf‐out at the scale of tree communities. North American and European forests showed similar ICVLo, in spite of their differences in terms of species richness and phylogenetic diversity, highlighting the relevance of environmental controls on ICVLo. We quantified two ecological implications of ICVLo (difference in terms of radiation received and exposure to late frost), which should be explored in the context of ongoing climate change, which affects trees differently according to their phenological niche.more » « less
An official website of the United States government
